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Highlights  Abstract  

▪ Small sample sizes cause epistemic 

uncertainties in reliability estimation. 

▪ Uncertainty theory was utilized to address 

epistemic uncertainties. 

▪ The Wiener and Liu process degradation 

models were proposed. 

▪ Sensitivities of degradation models for various 

sample sizes and measurement times were 

analyzed based on RQRL. 

▪ Results showed using uncertain process 

degradation model improved stability of 

reliability estimation under small-sample 

conditions. 

 Small sample sizes cause epistemic uncertainties in reliability estimation 

and even result in potential risks in maintenance strategies. To explore 

the difference between stochastic- and uncertain-process-based 

degradation modeling in reliability estimation for small samples, this 

study proposes a comparative analysis methodology based on the range 

of quantile reliable lifetime (RQRL). First, considering both unit-to-unit 

variability and epistemic uncertainty, we proposed the Wiener and Liu 

process degradation models. Second, based on the RQRL, a comparative 

analysis method of different degradation models for reliability 

estimation under various sample sizes and measurement times was 

proposed. Third, based on a case study, the sensitivities of the Wiener 

and Liu process degradation models for various sample sizes and 

measurement times were compared and analyzed based on the RQRL. 

The results demonstrated that using the uncertain process degradation 

model improved the uniformity and stability of reliability estimation 

under small-sample conditions. 

  Keywords 
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1. Introduction 

Currently, products are expected to be highly reliable to increase 

system safety and reduce operational costs.1 However, these 

highly reliable and long-lifetime products can work for years 

without failure in regular reliability testing, and obtaining 

lifetime data is an extremely difficult and expensive task. 

Therefore, degradation data-based reliability estimation is 

necessary.2,3 

The degradation model is a key metric for degradation 

analysis and reliability estimation. In existing studies, stochastic 

process models accurately depict the performance degradation 

caused by the operational environment.4,5 Three widely used 

stochastic processes include the Wiener,6,7 gamma,8,9 and 

inverse Gaussian,10,11 processes. The Wiener process model has 

attracted significant interest because of its flexible application.12 

Wang et al.13 investigated the reliability of semiconductor 

products with recoverability effects. Chen et al.14 proposed  

a prognostic framework based on models and data-driven 

methods. Cai et al.15 forecasted the remaining useful life using 
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current and historical data. Sun et al.16 analyzed a nonlinear 

Wiener process by considering the competing causes of failures. 

Zheng et al.17 developed a bivariate Wiener model with the 

initial product status and deterioration speed. 

Although stochastic process models have been widely used, 

Kang et al.18 reported that probability-theory-based stochastic 

process models are better adapted for applications wherein 

sufficient samples are available to fit the probability 

distributions. However, only a few samples were actually tested 

owing to limited resources and costs. A small sample size can 

result in insufficient information to discriminate the product 

population. This results in epistemic uncertainties in the product 

reliability estimation, which can result in potential risks in the 

maintenance strategy. Based on normality, duality, subadditivity, 

and product axioms, Liu19,20 proposed the uncertainty theory. 

Uncertainty theory is a branch of axiomatic mathematics 

parallel to probability theory and is considered an effective 

mathematical system for addressing epistemic uncertainties. 

Based on the uncertainty theory, Kang et al.21-23 rebuilt the 

framework of the reliability theory and proposed a new belief 

reliability theory. Chen et al.24 proposed a design optimization 

framework based on belief reliability. Liu et al.25 introduced  

a belief reliability growth model for software. Furthermore, 

certain scholars have studied reliability estimation based on 

uncertain processes in the uncertainty theory. Li et al.26,27 and 

Wu et al.28 considered different combinations of unit, time, and 

stress dimensions and proposed three uncertain accelerated 

degradation testing (ADT) models. Chen et al.29 integrated 

multi-source ADT data by constructing evaluation indexes for 

the datasets. Li et al.30 quantified the uncertainties in the 

degradation process of a planetary reducer. Li et al.31 

investigated a multi-state degradation system with epistemic 

uncertainties. Wang et al.32 developed an uncertain-process-

based reliability model for two-phase deteriorating systems. 

Chen et al.33 analyzed the hybrid uncertainties of the dependent 

competing failure process. Thus, uncertain processes have 

garnered increasing attention for reliability estimations that 

consider epistemic uncertainties. 

A comparative analysis of stochastic- and uncertain-process-

based degradation models is currently among the research 

highlights, particularly under small-sample conditions (sample 

size is less than ten34). Based on the Liu process in uncertain 

processes, Li et al.26 introduced an uncertain ADT model and 

proposed an assessment index termed “range of quantile reliable 

lifetime (RQRL) under specific reliability” to compare the 

differences between Wiener- and Liu-process-based ADT 

models in unit dimension. However, when considering both 

product unit-to-unit variability and degradation epistemic 

uncertainty, there is a lack of comparative analysis between 

stochastic and uncertain process-based degradation models for 

reliability estimation under various sample sizes and 

measurement times. Motivated by Li et al.26, under small-

sample conditions, this study proposed a comparative analysis 

methodology of stochastic process and uncertain process 

degradation modeling based on the RQRL under various sample 

sizes and measurement times. In stochastic processes, the 

Wiener process has garnered widespread attention owing to its 

nonmonotonic behavior. Similarly, as an uncertain process for 

depicting nonmonotonic degradation trajectories, the Liu 

process is widely used for reliability modeling and estimation. 

Thus, we selected the Wiener and Liu processes as typical 

stochastic and uncertain processes for degradation modeling, 

respectively. The contributions of this study are summarized 

below. First, considering both unit-to-unit variability and 

epistemic uncertainty, we proposed the Wiener and uncertain 

process degradation models. Second, based on the RQRL, we 

proposed a comparative analysis method for different 

degradation models for reliability estimation under various 

sample sizes and measurement times. Finally, using GaAs laser 

data in a real case study, we compared and analyzed the 

sensitivities of the Wiener and Liu process degradation models 

to various sample sizes and measurement times based on the 

RQRL. 

The remainder of this paper is organized as follows. Section 

2 proposes the Wiener- and Liu-process-based degradation and 

reliability models. Section 3 presents statistical methods for the 

Wiener and Liu process degradation models. Section 4 presents 

a case study to analyze the sensitivity of the degradation model 

to various sample sizes and measurement times based on the 

RQRL. Finally, Section 5 concludes the study. 
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2. Degradation and reliability modeling 

2.1. Degradation modeling 

2.1.1. Wiener-process-based degradation modeling 

According to Si et al.35, a Wiener degradation model with  

a linear trajectory is expressed as 

𝑌(𝑡) = 𝜈𝑤𝑡 + 𝜆𝑤𝐵𝑤(𝑡),  (1) 

where Y(t) is cumulative degradation at time t, νw is drift 

coefficient representing the degradation rate, λw is the diffusion 

coefficient, and Bw(t) is a standard Brownian motion 

representing the inherent temporal variability of Wiener 

process.35 Bw(t) obeys a normal probability distribution with 

expected value 0 and variance t, denoted by Bw(t) ~ N(0, t) for 

each t∈(0, +∞). The cumulative distribution function (CDF) is 

expressed as 

𝐹(𝑥) = ∫
1

√𝑡√2𝜋
𝑒𝑥𝑝 (−

𝑧2

2𝑡
) 𝑑𝑧 = Φ(

𝑥

√𝑡
)

𝑥

−∞
, (2) 

where Φ(·) denotes a standard normal probability distribution 

function. 

Individuality reveals different degradation rates because of 

the impact of product techniques. To demonstrate this unit-to-

unit variability, specific parameters can be rendered randomly.36 

According to probability theory, to depict unit-to-unit 

degradation rate in Equation (1), νw can be assumed to follow a 

normal distribution36, which is expressed as 

𝜈𝑤~𝑁(𝜇𝑤𝜈 , 𝜎𝑤𝜈
2 ),   (3) 

where N(·) denotes a normal probability distribution, and μwν 

and σwν are the expected value and standard deviation, 

respectively. 

Equations (1) and (3) are denoted as M1. Within the 

framework of the probability theory, Model M1 considers both 

unit-to-unit and temporal variabilities. Based on model M1, the 

degradation values obey a normal distribution with expected 

value μwνt and variance 𝜎𝑤𝜈
2 𝑡2 + 𝜆𝑤

2 𝑡 , that is, 

𝑌(𝑡)~𝑁(𝜇𝑤𝜈𝑡, 𝜎𝑤𝜈
2 𝑡2 + 𝜆𝑤

2 𝑡). The probability density function 

(PDF) is 

𝑓(𝑤)𝑌(𝑦) =
1

√2𝜋(𝜎𝑤𝜈
2 𝑡2+𝜆𝑤

2 𝑡)

𝑒𝑥𝑝 (−
(𝑦−𝜇𝑤𝜈𝑡)

2

2(𝜎𝑤𝜈
2 𝑡2+𝜆𝑤

2 𝑡)
).        (4) 

2.1.2. Liu-process-based degradation modeling 

According to uncertainty theory, when discriminating the 

population of products, a small sample size can provide 

insufficient information and result in epistemic uncertainties in 

reliability estimation. Chen et al.37 used a diffusion term with 

respect to time to describe epistemic uncertainties owing to  

a small sample size. Thus, a linear degradation model based on 

the Liu process is expressed as 

𝑌(𝑡) = 𝜈𝑢𝑡 + 𝜆𝑢𝐶𝑢(𝑡),  (5) 

where νu is the drift coefficient representing degradation rate, λu 

is the diffusion coefficient, λuCu(t) is the diffusion term with 

respect to time representing epistemic uncertainties, and Cu(t) is 

an uncertain Liu process. Cu(t) obeys a normal uncertainty 

distribution with expected value 0 and variance t2, denoted by 

Cu(t) ~ Nu(0, t) for each t∈(0, +∞).20,38 The uncertainty 

distribution function is 

Φ(𝑢)𝑡(𝑥) = (1 + 𝑒𝑥𝑝 (−
𝜋𝑥

√3𝑡
))

−1

,  (6) 

where Φ(u)(·) denotes an uncertainty distribution function. 

Note that there are three differences between the Wiener 

process Bw(t), and Liu process Cu(t). 

(i) Bw(t) and Cu(t) are different mathematical systems. Bw(t) 

belongs to the probability-theory-based stochastic process, 

where almost all sample paths are continuous. In contrast, Cu(t) 

belongs to the uncertainty-theory-based uncertain process, 

where almost all sample paths are Lipschitz continuous.20 

(ii) The distribution functions of Bw(t) and Cu(t) are different. 

Bw(t) follows the normal probability distribution as in Equation 

(2). However, Cu(t) follows a normal uncertainty distribution, 

as in Equation (6). 

(iii) The rates of change for the increments in Bw(t) and Cu(t) 

are different. For Bw(t) and for each Δt > 0, the change rate for 

increments (𝐵𝑤(𝑡 + 𝛥𝑡) − 𝐵𝑤(𝑡))/𝛥𝑡  is a random variable 

with expected value 0 and variance 1/Δt, that is, 

𝐵𝑤(𝑡+Δ𝑡)−𝐵𝑤(𝑡)

Δ𝑡
~𝑁 (0,

1

Δ𝑡
).   (7) 

In Equation (7), the distribution of change rate for 

increments relates to Δt. When Δt approaches zero, (𝐵𝑤(𝑡 +

𝛥𝑡) − 𝐵𝑤(𝑡))/𝛥𝑡~𝑁(0,∞). For Cu(t) and for each Δt > 0, the 

change rate for increments (𝐶𝑢(𝑡 + 𝛥𝑡) − 𝐶𝑢(𝑡))/𝛥𝑡  is an 

uncertain variable with expected 0 and variance 1, that is, 

𝐶𝑢(𝑡+Δ𝑡)−𝐶𝑢(𝑡)

Δ𝑡
~𝑁𝑢(0,1).   (8) 

In Equation (8), the distribution of change rate for 

increments and the Δt are independent, which is more suitable 

for describing a uniform motion process. 
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Based on the Liu process, to depict unit-to-unit degradation 

rate in Equation (5), νu can be assumed to follow a normal 

uncertainty distribution under small sample conditions28, which 

is expressed as 

𝜈𝑢~𝑁𝑢(𝜇𝑢𝜈, 𝜎𝑢𝜈),   (9) 

where Nu(·) denotes normal uncertainty distribution, and μuν and 

σuν are the expected value and standard deviation, respectively. 

Equations (5) and (9) are denoted as M2. Within the 

framework of the uncertainty theory, Model M2 considers both 

unit-to-unit variability and epistemic uncertainty. Based on 

model M2, the degradation values follow a normal uncertainty 

distribution with expected value μuνt and variance (𝜎𝑢𝜈 +

𝜆𝑢)
2𝑡2 , that is, 𝑌(𝑡)~𝑁𝑢(𝜇𝑢𝜈𝑡, (𝜎𝑢𝜈 + 𝜆𝑢)𝑡) . The uncertainty 

distribution function is expressed as: 

Φ(𝑢)𝑡(𝑦) = (1 + 𝑒𝑥𝑝 (
𝜋(𝜇𝑢𝜈𝑡−𝑦)

√3𝑡(𝜎𝑢𝜈+𝜆𝑢)
))

−1

.  (10) 

The two degradation models based on the Wiener and Liu 

processes are presented in Table 1. As evident, the primary 

difference between the models M1 and M2 is the uncertainty 

degradation modeling. In model M1, the unit-to-unit and 

temporal variabilities are represented by a normal probability 

distribution, whereas in model M2, the unit-to-unit variability 

and epistemic uncertainty are represented by a normal 

uncertainty distribution. 

Table 1. Wiener- and Liu-process-based degradation models. 

Notation Model 

𝑀1 
𝑌(𝑡) = 𝜈𝑤𝑡 + 𝜆𝑤𝐵𝑤(𝑡), 𝐵𝑤(𝑡)~𝑁(0, 𝑡), 

𝜈𝑤~𝑁(𝜇𝑤𝜈 , 𝜎𝑤𝜈
2 ) 

𝑀2 
𝑌(𝑡) = 𝜈𝑢𝑡 + 𝜆𝑢𝐶𝑢(𝑡), 𝐶𝑢(𝑡)~𝑁𝑢(0, 𝑡), 

𝜈𝑢~𝑁𝑢(𝜇𝑢𝜈, 𝜎𝑢𝜈) 

2.2. Reliability modeling 

The moment when the performance degradation reaches a pre-

given threshold D for the first time is generally termed the 

lifetime TD or first hitting time (FHT).26 

𝑇𝐷 = 𝑖𝑛𝑓{𝑡𝐷 ≥ 0|𝑌(𝑡) = 𝐷}.   (11) 

2.2.1. Wiener-process-based reliability modeling 

It has been proven that the FHT of the Wiener process obeys an 

inverse Gaussian distribution.2 Using Equation (1), when only 

temporal variability is considered, the PDF of FHT is 

𝑓𝑇(𝑡) =
𝐷

√2𝜋𝜆𝑤
2 𝑡3

𝑒𝑥𝑝 (−
(𝐷−𝜈𝑤𝑡)

2

2𝜆𝑤
2 𝑡

),  (12) 

and the CDF of FHT is 

𝐹𝑇(𝑡) = Φ(
𝜈𝑤𝑡−𝐷

𝜆𝑤√𝑡
) + 𝑒𝑥𝑝 (

2𝜈𝑤𝐷

𝜆𝑤
2 )Φ(

−𝐷−𝜈𝑤𝑡

𝜆𝑤√𝑡
).      (13) 

Considering both unit-to-unit and temporal variabilities, Si 

et al.35 derived the PDF and CDF of the FHT for the Wiener 

process. Thus, based on model M1, the PDF of the FHT is 

expressed as 

𝑓𝑇(𝑡) =
𝐷

√2𝜋𝑡3(𝜎𝑤𝜈
2 𝑡+𝜆𝑤

2 )

𝑒𝑥𝑝 (−
(𝐷−𝜇𝑤𝜈𝑡)

2

2𝑡(𝜎𝑤𝜈
2 𝑡+𝜆𝑤

2 )
),     (14) 

and the reliability model is expressed as 

𝑅𝑇(𝑡) = 1 − 𝐹𝑇(𝑡) = Φ(
𝐷−𝜇𝑤𝜈𝑡

√𝜎𝑤𝜈
2 𝑡2+𝜆𝑤

2 𝑡

)− 𝑒𝑥𝑝 (
2𝜇𝑤𝜈𝐷

𝜆𝑤
2 +

2𝜎𝑤𝜈
2 𝐷2

𝜆𝑤
4 )Φ(−

2𝜎𝑤𝜈
2 𝐷𝑡+𝜆𝑤

2 (𝐷+𝜇𝑤𝜈𝑡)

𝜆𝑤
2 √𝜎𝑤𝜈

2 𝑡2+𝜆𝑤
2 𝑡

).   (15) 

2.2.2. Liu-process-based reliability modeling 

According to the definition of the FHT for an uncertain 

process39, the uncertainty distribution of the FHT for model M2 

is expressed as 

H𝑢(𝑡) = M{𝑡𝐷 ≤ 𝑡} = M{𝑠𝑢𝑝  𝑌𝑢(𝑡) ≥ 𝐷},     (16) 

where Hu(t) is the uncertainty distribution of FHT, and M{·} is 

the uncertain measure. 

Referring to Liu40 and Wu et al.28, we can conclude that Y(t) 

in model M2 is an uncertain process with independent 

degradation increments. Applying the extreme value theorem39 

of the uncertain process, the analytical expression of the FHT 

for model M2 is expressed as 

H𝑢(𝑡) = (1 + 𝑒𝑥𝑝 (
𝜋(𝐷−𝜇𝑢𝜈𝑡)

√3(𝜎𝑢𝜈+𝜆𝑢)𝑡
))

−1

.  (17) 

Based on the uncertainty theory, Kang et al.22 defined two 

new reliability metrics, that is, the belief reliability Ru(t) and the 

belief reliable lifespan BLu(α). Within the required operating 

status, Ru(t) is the belief degree for a product performing a 

specific function at time t.22 Based on model M2, the reliability 

model is expressed as 

𝑅𝑢(𝑡) = 1 − H𝑢(𝑡) = (1 + 𝑒𝑥𝑝 (
𝜋(𝜇𝑢𝜈𝑡−𝐷)

√3(𝜎𝑢𝜈+𝜆𝑢)𝑡
))

−1

.      (18) 

BLu(α) is defined as the supremum lifespan when Ru(t) is 

higher than the belief degree α (α∈[0, 1])22, which is expressed 

as 

𝐵𝐿𝑢(𝛼) = 𝑠𝑢𝑝{𝑡|𝑅𝑢(𝑡) ≥ 𝛼}.   (19) 
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2.3. RQRL 

The assessment index “RQRL” is short for “range of quantile 

reliable lifetime” under specific reliability.26 RQRL refers to the 

distance between the lower and upper limits of reliable lifespan; 

thus, it stands for the uniformity of reliability estimation. A 

higher RQRL indicates a less uniform reliability estimation. 

Based on the RQRL, we proposed a comparative analysis 

method for different degradation models for reliability 

estimation under various sample sizes and measurement times.  

First, we analyzed the difference between the Wiener and 

Liu process degradation models in terms of reliability 

estimation for various sample sizes. We assume that the total 

sample size is p, from which we randomly selected n samples. 

From this, there are 𝐶𝑝
𝑛 combinations of sample sizes, and we 

can obtain 𝐶𝑝
𝑛 reliability curves. Using Equation (20), we can 

calculate the lower and upper limits of the reliability estimation. 

 

{
 
 

 
 
𝑅(𝑛)
𝑙𝑙 (𝑡) = ∧

𝑔=1
𝐶𝑝
𝑛

𝑅(𝑛)
𝑔
(𝑡)

𝑅(𝑛)
𝑢𝑙 (𝑡) = ∨

𝑔=1
𝐶𝑝
𝑛

𝑅(𝑛)
𝑔
(𝑡)

,  (20) 

where 𝑅(𝑛)
𝑙𝑙 (𝑡) , 𝑅(𝑛)

𝑢𝑙 (𝑡) , and 𝑅(𝑛)
𝑔
(𝑡)  denote the lower limit, 

upper limit, and g-th reliability estimation results, respectively, 

for n sample conditions. 

Furthermore, we utilized an assessment index RQRL(n)(R) to 

denote the difference between the upper limit of reliable 

lifespan 𝑡(𝑛)
𝑢𝑙 (𝑅) and the lower limit of reliable lifespan 𝑡(𝑛)

𝑙𝑙 (𝑅) 

with reliability of R under n sample conditions, which is 

expressed as 

𝑅𝑄𝑅𝐿(𝑛)(𝑅) = 𝑡(𝑛)
𝑢𝑙 (𝑅) − 𝑡(𝑛)

𝑙𝑙 (𝑅).  (21) 

Thereafter, we analyzed the differences between the Wiener 

and Liu process degradation models for reliability estimation 

under different measurement times. We assume that the total 

measurement time is q, from which we randomly select m 

measurements. From this, there are 𝐶𝑞
𝑚  combinations of 

measurement times, and we can obtain 𝐶𝑞
𝑚  reliability curves. 

Using Equation (22), we can calculate the lower and upper 

limits of the reliability estimation for different measurement 

times. 

 

{
 
 

 
 
𝑅(𝑚)
𝑙𝑙 (𝑡) = ∧

𝑔=1
𝐶𝑞
𝑚

𝑅(𝑚)
𝑔
(𝑡)

𝑅(𝑚)
𝑢𝑙 (𝑡) = ∨

𝑔=1
𝐶𝑞
𝑚

𝑅(𝑚)
𝑔
(𝑡)

,  (22) 

where 𝑅(𝑚)
𝑙𝑙 (𝑡), 𝑅(𝑚)

𝑢𝑙 (𝑡), and 𝑅(𝑚)
𝑔
(𝑡) are the lower limit, upper 

limit, and g-th reliability estimation results, respectively, at 

measurement time m. 

Similarly, we used an assessment index RQRL(m)(R) to 

quantify the distance between the upper and lower limits of the 

reliable lifespan with a reliability of R under measurement time 

m, that is, 

𝑅𝑄𝑅𝐿(𝑚)(𝑅) = 𝑡(𝑚)
𝑢𝑙 (𝑅) − 𝑡(𝑚)

𝑙𝑙 (𝑅).  (23) 

In a real case study, based on the RQRL of models M1 and 

M2, we compared and analyzed the two degradation models for 

reliability estimation under various sample sizes and 

measurement times. 

3. Statistical method 

In the testing, assuming that the sample size is n, we performed 

m equally periodic degradation observations. The interval 

between measurements at the j-th measurement of i-th sample 

is denoted as Δtij, that is, Δtij = ti,j – ti,j-1, where j = 1, 2, …, m, i 

= 1, 2, …, n, and the degradation increment is Δyij = Yi,j – Yi,j-1. 

Because the Wiener-process-based model M1 and the Liu-

process-based model M2 belong to different mathematical 

systems, we adopted the probability-theory-based maximum 

likelihood estimation (MLE) and the uncertainty-theory-based 

principle of least squares (PLS)41 to estimate the unknown 

parameters in Section 3.1 and 3.2, respectively. 

3.1. Statistical method for model M1 

For model M1, we estimated the unknown parameter vector 

𝛩𝑀1 = [𝜇𝑤𝜈 , 𝜎𝑤𝜈 , 𝜆𝑤]  by applying a probability-theory-based 

MLE. The assessment procedure for charity can be divided into 

two stages. 

Stage 1: The degradation increments of i-th sample obey 

𝛥𝑦𝑖𝑗~𝑁(𝜈𝑤𝑖𝛥𝑡, 𝜎𝑤𝑖
2 𝛥𝑡). The PDF is 

𝑓(𝑤)(Δ𝑦𝑖𝑗) =
1

√2𝜋𝜎𝑤𝑖
2 Δ𝑡

𝑒𝑥𝑝 (−
(Δ𝑦𝑖𝑗−𝜈𝑤𝑖Δ𝑡)

2

2𝜎𝑤𝑖
2 Δ𝑡

),    (24) 

and logarithm likelihood function is 

𝑙(𝑤)𝑖 = −
𝑚

2
𝑙𝑛( 2𝜋Δ𝑡) −

𝑚

2
𝑙𝑛 𝜎𝑤𝑖

2 − ∑
(Δ𝑦𝑖𝑗−𝜈𝑤𝑖Δ𝑡)

2

2𝜎𝑤𝑖
2 Δ𝑡

𝑚
𝑗=1 .    (25) 

We set 𝜕𝑙(𝑤)𝑖/𝜕𝜈𝑤𝑖 = 0  and 𝜕𝑙(𝑤)𝑖/𝜕𝜎𝑤𝑖
2 = 0  to obtain the 

MLEs of 𝜈𝑤𝑖  and 𝜎𝑤𝑖
2  as 

{
�̂�𝑤𝑖 =

1

𝑚
∑

Δ𝑦𝑖𝑗

Δ𝑡

𝑚
𝑗=1

�̂�𝑤𝑖
2 =

1

𝑚
∑

(Δ𝑦𝑖𝑗−�̂�𝑤𝑖Δ𝑡)
2

Δ𝑡

𝑚
𝑗=1

.   (26) 
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Stage 2: In model M1, 𝜈𝑤𝑖~𝑁(𝜇𝑤𝜈 , 𝜎𝑤𝜈
2 )  and 𝜎𝑤𝑖

2 𝛥𝑡 =

𝜎𝑤𝜈
2 𝛥𝑡2 + 𝜆𝑤𝑖

2 𝛥𝑡. Thus, we obtain the MLEs of 𝜇𝑤𝜈, 𝜎𝑤𝜈
2 , and 

𝜆𝑤
2  as 

{
 
 

 
 �̂�𝑤𝜈 =

1

𝑛
∑ �̂�𝑤𝑖
𝑛
𝑖=1

�̂�𝑤𝜈
2 =

1

𝑛
∑ (�̂�𝑤𝑖 − �̂�𝑤𝜈)

2𝑛
𝑖=1

�̂�𝑤
2 = (

1

𝑛
∑ √|�̂�𝑤𝑖

2 − �̂�𝑤𝜈
2 Δ𝑡|𝑛

𝑖=1 )

2
.  (27) 

3.2. Statistical method for model M2 

For model M2, the unknown parameters 𝛩𝑀2 = [𝜇𝑢𝜈, 𝜎𝑢𝜈 , 𝜆𝑢] 

are estimated by applying an uncertainty-theory-based PLS41. 

The estimation procedure is divided into two stages. 

Stage 1: Belief degrees calculation 

In probability theory, the unknown parameters are estimated 

by constructing the PDF of the degradation increments. 

However, the density function no longer exists in the 

uncertainty theory.42 Instead, only an uncertainty distribution 

function can be used. The belief degree is adopted in the 

uncertainty theory to represent the strength of an event.19 Thus, 

before estimating the parameters, we should calculate the belief 

degrees of the degradation increments. 

Following the Liu process, the degradation increments at the 

j-th measurement Δyij = (Δy1j, Δy2j, …, Δynj) follow a normal 

uncertainty distribution, denoted as 𝛥𝑦𝑖𝑗~𝑁𝑢(𝜇𝑢𝜈𝛥𝑡, (𝜎𝑢𝜈 +

𝜆𝑢)𝛥𝑡). The uncertainty distribution function is as follows: 

Φ(𝑢)𝑡(Δ𝑦𝑖𝑗) = (1 + 𝑒𝑥𝑝 (
𝜋(𝜇𝑢𝜈Δ𝑡−Δ𝑦𝑖𝑗)

√3Δ𝑡(𝜎𝑢𝜈+𝜆𝑢)
))

−1

,       (28) 

where each degradation increment Δyij has a belief degree αij. 

The elements Δyij = (Δy1j, Δy2j, …, Δynj) are sorted in ascending 

order. The belief degrees of the degradation increments are 

calculated using the approximate mean rank function26 as 

follows: 

𝛼𝑖𝑗 =
𝑖−0.3

𝑛𝑗+0.4
, 𝑖 = 1,2, . . . 𝑛𝑗.   (29) 

Stage 2: Parameters estimation 

According to PLS, the objective function is the sum of the 

squares of the distance between the calculated belief degrees 

and the uncertainty distribution of the degradation increments.41 

The unknown parameters are estimated by minimizing the 

objective function as follows: 

�̂�𝑀2 = 𝑚𝑖𝑛∑ ∑ (Φ(𝑢)(Δ𝑦𝑖𝑗|𝛩) − 𝛼𝑖𝑗)
2𝑚

𝑗=1

𝑛𝑗
𝑖=1

.      (30) 

4. Case study 

4.1. Degradation and uncertainty analysis 

Meeker and Escobar43 recorded the percentage growth in the 

operating current of GaAs lasers in a real engineering scenario. 

In this study, these data were used for degradation modeling and 

uncertainty analysis. The total sample size was set at n = 15. The 

termination test time was 4000 h and the interval between 

degradation measurements was set to Δt = 250 h. The failure 

threshold was set to D = 10, that is, when the operating current 

increased by 10%, the GaAs laser was out of service. The 

degradation paths of the operating currents of the GaAs lasers 

are presented in Fig. 1; the degradation path of each sample was 

approximately linear. 

 

Fig. 1. Percentage growth in operating current of GaAs lasers. 

The MLE and PLS methods were used to assess unknown 

parameters, and the results are summarized in Table 2.

Table 2. Parameter estimations of models M1 and M2. 

Model Estimation method 
Parameter estimations 

𝜇𝜈                                               𝜎𝜈                                          𝜆 

𝑀1 MLE 0.0020 (𝜇𝑤𝜈) 4.6740 × 10−4 (𝜎𝑤𝜈) 0.0173 (𝜆𝑤) 

𝑀2 PLS 0.0019 (𝜇𝑢𝜈) 1.3316 × 10−4 (𝜎𝑢𝜈) 7.5946 × 10−4 (𝜆𝑢) 
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As shown in Table 2, the estimated value of μν in model M1 

was almost equal to the estimation in M2, which indicated that 

the degradation rates of M1 and M2 were nearly identical. 

However, the estimated values of σν and λ in model M1 were 

different than those in M2. This is because the uncertainty 

modeling and statistical methods for M1 and M2 were different. 

Moreover, we analyzed the degradation trends and 

envelopments of the sample paths. For model M1, we used the 

Monte Carlo simulation method to compute the degradation 

increments and generate sample degradation paths. For model 

M2, we used an uncertain simulation method28 to generate 

sample degradation paths. The uncertainty distribution function 

represents the relationship between the degradation increment 

and belief degree. According to the uncertainty distribution of 

the degradation increments, the inverse uncertainty distribution 

function can be derived.38 Thus, assuming that the belief degree 

is calculated, the inverse uncertainty distribution function can 

be utilized to compute the degradation increments. Based on 

model M2, the uncertainty distribution of the degradation 

increments is shown in Equation (28). Therefore, the inverse 

uncertainty distribution function is derived as 

Φ(𝑢)Δ𝑡
−1 (𝛼𝑖𝑗) = 𝜇𝑢𝜈Δ𝑡 +

√3Δ𝑡(𝜎𝑢𝜈+𝜆𝑢)

𝜋
𝑙𝑛 (

𝛼𝑖𝑗

1−𝛼𝑖𝑗
) =

Δ𝑦𝑖𝑗 , 𝛼𝑖𝑗 ∈ (0,1),   (31) 

where Φ(𝑢)
−1 (⋅) denotes an inverse uncertainty distribution 

function. 

The uncertain simulation method is illustrated as follows: 

Step 1: Initialize the parameter j = 0; 

Step 2: Let j = j + 1, and arbitrarily sample the belief degree 

αij from (0, 1); 

Step 3: Using Equation (31), compute the degradation 

increments Δyij; 

Step 4: Repeat Step2–Step3, until j = m. 

Following the algorithm above, we obtained the cumulative 

degradation at measurement time tm for i-th product as follows: 

𝑌𝑖(𝑡𝑚) = ∑ Δ𝑦𝑖(𝑡𝑗)
𝑚
𝑗=1 = ∑ Δ𝑦𝑖𝑗

𝑚
𝑗=1 .  (32) 

Using Monte Carlo and uncertain simulation methods, we 

obtained the degradation trends for M1 and M2. The results are 

presented in Fig. 2. The degradation tendencies fit well with the 

actual degradation data. The results demonstrated that the 

parameter estimations were reasonable and that models M1 and 

M2 were both suitable for modeling the degradation trends. 

 

Fig. 2. Degradation trends based on models M1 and M2. 

In the degradation envelopment analysis, we simulated 1000 

sample degradation paths and obtained the lower and upper 

boundaries based on models M1 and M2. The results are 

presented in Fig. 3. As evident, the lower and upper boundaries 

enveloped almost all the degradation data, which demonstrated 

that the models M1 and M2 were both suitable for modeling the 

degradation data. 

 

Fig. 3 Degradation envelopments based on models M1 and M2. 

4.2. Reliability estimation and sensitiveness analysis 

To explore the difference between the Wiener and Liu process 

degradation modeling in reliability estimation, we estimated the 

reliability of GaAs lasers based on the models M1 and M2 and 

analyzed the model sensitivity to various sample sizes and 

measurement times based on RQRL. 

First, we maintained the measurement times and analyzed 

the model sensitivity to various sample sizes. The total sample 
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size and measurement time were 15 and 16, respectively. The 

measurement times were set equal to the total measurement 

times, that is m = 16. Refer to the optimal design of ADT29, and 

to fully represent the trend of reliability estimation curves under 

different sample sizes, we set five different sample sizes and set 

to have equal intervals; that is, the sample sizes were set as n = 

3(3)15. There were 𝐶15
𝑛   combinations of samples when the 

sample size was n; therefore, we obtained 𝐶15
𝑛  reliability curves. 

Using Equations (15), (18), and (20), we obtained the lower and 

upper limits of the reliability estimation for various sample sizes 

based on the models M1 and M2. The results are shown in Fig. 

4.

 

Fig. 4. Lower and upper limits of reliability estimation under n = 3(3)15 and m = 16.

We utilized the assessment index “RQRL(n)(R)” in Equation 

(21) to quantify the sensitiveness of models M1 and M2 to 

various sample sizes. In practical engineering, engineers 

typically focus on high reliability, which is above 0.8.28 In Fig. 

4, RQRL(n)(R) = 0 when n = 15. Using Equation (21), we 

calculated RQRL(n)(R) with R = [0.8, 0.99] for n = 3(3)12. The 

results are shown in Fig. 5. 
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Fig. 5. RQRL(n) under n = 3(3)12 and m = 16.

Figures 4 and 5 indicated the following results. First, with 

increasing test time, the reliability decreased from 1, whereas 

RQRL(n) gradually increased. Under equal sample conditions,  

a higher RQRL(n) indicated that the reliability estimation was 

less uniform. Thus, the reliability estimation became less 

uniform with an increase in the test time. Second, the reliability 

curves based on models M1 and M2 had cross points (e.g., in Fig. 

4 “n = 15,” the cross point was 4350 h). Before the crossing 

point, the reliability estimation based on model M2 was 

conservative; however, after the crossing point, the results were 

the opposite. Third, with an increasing sample size, the RQRL(n) 

based on models M1 and M2 decreased. This indicates that 

obtaining more information about the samples greatly reduced 

the degradation epistemic uncertainties and accordingly 

improved the uniformity of the reliability estimation. Finally, 

for the same sample size, the RQRL(n) based on the model M2 

was much lower than that based on M1, indicating that this 

model offered a more uniform reliability estimation result. This 

demonstrates that the sensitivity of the uncertain process 

degradation model to sample sizes (particularly for small 

sample sizes) was much lower than that of the stochastic process 

degradation model. Therefore, an uncertain process degradation 

model can provide a more stable reliability estimation result. 

Next, we maintained the sample size and analyzed the 

sensitivity of the degradation models to the measurement times. 

We set the sample size equal to that of the total sample size; that 

is, n = 15. Similar to the setting of n in Fig. 4, to fully represent 

the trend of the reliability estimation curves under different 

measurement times, we set five different measurement times at 

equal intervals, that is, the measurement times were set as m = 

4(3)16. Thus, in this case, we obtained the 𝐶16
𝑚 reliability curves. 

Using Equations (15), (18), and (22), we obtained the lower and 

upper limits of the reliability estimation for different 

combinations of measurement times. The results are presented 

in Fig. 6. 
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Fig. 6. Lower and upper limits of reliability estimation under n = 15 and m = 4(3)16.

Similarly, we utilized the assessment index “RQRL(m)(R),” 

as in Equation (23), to quantify the sensitiveness of models M1 

and M2 to various measurement times. In Fig. 6, RQRL(m)(R) = 

0 when m = 16. Following Equation (23), we calculated 

RQRL(m)(R) using R = [0.8, 0.99] for m = 4(3)13. The results are 

shown in Fig. 7.
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Fig. 7. RQRL(m) under n = 15 and m = 4(3)13.

Based on Fig. 6 and 7, we obtained the following 

observations. First, with increasing test time, RQRL(m) gradually 

increased, and a higher RQRL(m) indicated that the reliability 

estimation was less uniform. Second, RQRL(m) based on the 

models M1 and M2 both decreased with increasing measurement 

times, demonstrating that more degradation observations 

significantly reduced epistemic uncertainties and improved the 

uniformity of reliability estimation. Finally, under the same 

measurement times, the RQRL(m) based on model M2 was 

slightly higher than that based on M1, which indicated that the 

sensitivity of the uncertain process degradation model to 

measurement times was slightly higher than that of the 

stochastic process degradation model. Therefore, the stochastic 

process degradation model can provide a more stable reliability 

estimation result. 

5. Conclusion 

In this study, considering both the unit-to-unit variability and 

epistemic uncertainty, Wiener-process-based (M1) and Liu-

process-based (M2) degradation models were proposed. Based 

on the RQRL, we compared and analyzed the sensitivity of 

models M1 and M2 to various sample sizes and measurement 

times. The major conclusions are drawn as follows: 

1) The stochastic- and uncertain-process-based degradation 

models both fit well with the actual sample paths; therefore, 

both models were suitable for modeling the degradation data. 

2) With an increasing sample size and measurement time, 

the RQRL gradually decreased. This demonstrates that the 

larger product sample sizes and more measurement times 

reduced the degradation epistemic uncertainties and improved 

the uniformity and stability for reliability estimation. 

3) Under the same sample sizes, particularly under the same 

small sample sizes (i.e., n = 3, n = 6, n = 9 in Fig. 5), RQRL(n) 

based on model M2 was considerably lower than that based on 

M1, demonstrating that the uncertain process degradation model 

provided a much more uniform reliability estimation result than 
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the stochastic process degradation model. However, for the 

same measurement times (i.e., m = 4(3)13 in Fig. 7), the RQRL(m) 

based on model M2 was slightly higher than that based on M1, 

demonstrating that the stochastic process degradation model 

offered a more uniform reliability estimation result. Thus, under 

small-sample conditions, the uncertain-process-based 

degradation model was preferable for decreasing epistemic 

uncertainties and increasing the stability of the reliability 

estimation. 

The following topics are worthwhile for further research: 

1) This study analyzed the differences between stochastic 

process and uncertain process degradation modeling in 

reliability estimation based on the RQRL. In the future, we will 

compare the two uncertainty degradation models through 

further theoretical analysis and engineering case studies. 

2) This study utilized the probability-theory-based MLE and 

uncertainty-theory-based PLS to estimate unknown parameters. 

We plan to explore new statistical methods that can be used for 

comparative verification with existing algorithms. 

3) The Bayesian method is typically used to describe 

uncertainties based on subject probability. We can compare and 

analyze the differences between the Bayesian method and 

uncertainty theory in quantifying epistemic uncertainties. 

4) To update the belief degree of the uncertain variable with 

the current state, we will attempt to combine the uncertain 

process with the study of conditional reliability, such that the 

product belief reliability under dynamic conditions can be 

estimated. 

Acronyms 

CDF  cumulative distribution function 

FHT  first hitting time 

MLE  maximum likelihood estimation 

PDF  probability density function 

PLS  principle of least squares 

RQRL  range of quantile reliable lifetime 

Notation 

Φ(·) standard normal probability distribution function 

Φ(u)(·) uncertainty distribution function 

Φ(𝑢)
−1 (⋅) inverse uncertainty distribution function 

N(·) normal probability distribution 

Nu(·) normal uncertainty distribution 

Bw(·) standard Brownian motion 

Cu(·) Liu process 

ν drift coefficient 

λ diffusion coefficient 

μν expected value of ν 

σν standard deviation of ν 

t testing time 

∆t interval between testing observations 

Yi(tj) degradation of i-th sample at observation time tj 

∆y degradation increments 

D failure threshold 

TD lifetime of products 

n number of samples 

m number of testing observations 

Θ set of degradation model parameters 

α belief degree 

R(t) reliability at time t 

Rll(t) lower limit of reliability estimation at time t 

Rul(t) upper limit of reliability estimation at time t 

tll(R) lower limit of reliable lifespan at reliability R 

tul(R) upper limit of reliable lifespan at reliability R 

RQRL(R) difference between lower and upper limit of 

reliable lifespan at reliability R
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